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Note on sources

The main sources for these notes are sections 2.3-2.4 of Sharifi [4], chapter 1 appendix A and
chapter 2 (especially 1.22, 1.23, 1.24) of Milne [2], and chapter 4 of Gille & Szamuely [1].
The material on Brauer groups is not intended to be a proper introduction to central simple
algebras. More details can be found in Rapinchuk [3].

Contents

1 Galois correspondence for infinite extensions 1
1.1 Absolute galois groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Galois cohomology 3
2.1 Multiplicative Hilbert 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Additive Hilbert 90 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Brauer groups 7
3.1 Brauer group of a finite field . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Galois correspondence for infinite extensions

Remark 1.1. Let L/K be a Galois extension, and E be the set of intermediate subfields
K ⊂ E ⊂ L such that E/K is finite Galois. Then

L =
⋃
E∈E

E

Additionally, E is partially ordered by inclusion, and is a directed set, since the compositum
EE ′/K is a finite Galois extension containing E and E ′. If E ⊂ E ′, then we have a restriction
map Gal(E ′/K) → Gal(E/K) by restricting automorphisms of E ′ to E. This makes the
Galois groups Gal(E/K) into a directed system.
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Proposition 1.1. Let L/K be a Galois extension. Then

Gal(L/K)→ lim←−Gal(E/K) σ 7→ (σ|E)

where E ranges over intermediate subfields K ⊂ E ⊂ L such that E/K is finite Galois.

Proof. Exercise for the reader to check that this actually maps into the direct limit, because
I feel lazy right now. This is clearly a group homomorphism. It is also clear that the kernel
is trivial, since if σ restricts to the identity on each E, it is the identity on L, since L =

⋃
E.

All that remains is surjectivity. Consider (σE) ∈ lim←−Gal(E/K). Define σ : L → L by
σ(x) = σE(x) for x ∈ E. By the compatibility condition of (σE) being in the inverse limit,
if x lies in two fields E,E ′ then σE(x) = σE′(x) = σEE′(x) so this is well defined. Since
L =

⋃
E, this defines σ on all of L. Clearly σ restricts to σE for each E, so (σE) is in the

image.

Remark 1.2. Since the inverse limit has a natural topology as a profinite group, the iso-
morphism above makes Gal(L/K) a topological group. In the case where L/K is finite, this
is just the discrete topology, but when L/K is infinite, this gives it a nontrivial topology.
Whenever L/K is Galois, we assume that Gal(L/K) has this topology, called the Krull
topology.

Theorem 1.2 (Fundamental theorem of Galois theory). Let L/K be a Galois extension and
let G = Gal(L/K). There is a bijection

{closed subgroups H ⊂ G} ←→ {intermediate subfields K ⊂ E ⊂ L}
H 7→ LH

Gal(L/E)←[ E

In particular, LGal(L/E) = E and Gal(L/LH) = H. Additionally,

1. The correspondence is inclusion reversing, i.e. H1 ⊂ H2 ⇐⇒ LH1 ⊃ LH2.

2. A closed subgroup H ⊂ G is normal if and only if LH/K is Galois. In this case,

Gal(LH/K) ∼= Gal(L/K)/H

3. A closed subgroup H ⊂ G is open if and only if LH/K is a finite extension. In this
case,

[G : H] = [LH : K]

Proof. Assuming the correspondence for finite Galois theory, this isn’t too much work to
show. This is not the focus of our seminar, so I’ll skip over it.
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1.1 Absolute galois groups

Definition 1.1. Let K be a field. A separable closure of K is a field Ksep which contains
all roots of separable polynomials over K.

Remark 1.3. In characteristic zero or for finite fields, separable closure is equal to algebraic
closure. The separable closure exists and is unique up to isomorphism. Note that Ksep/K
is Galois.

Definition 1.2. The absolute Galois group of K is GK = Gal(Ksep/K).

Proposition 1.3. Let K = Fq be a finite field with q elements. Then GK
∼= Ẑ.

Proof. For each n ≥ 1, there is a unique finite extension of Fq of degree n, which is Fqn .
Furthermore, the Galois group is

Gal(Fqn/Fq) ∼= Z/nZ

The inclusion relation on Fqn is by divisibility of n, so the inverse system of Galois groups
are the groups Z/nZ for n ≥ 1 ordered by divisibility with quotient maps Z/nZ → Z/mZ
when m|n. This inverse limit of this, as we already know, is Ẑ.

2 Galois cohomology

Definition 2.1. Let L/K be a Galois extension, and let A be a discrete Gal(L/K)-module
(with respect to Krull topology). The ith Galois cohomology group is H i(Gal(L/K), A).

Remark 2.1. The most obvious modules for Gal(L/K) are (L,+) and (L×,×). We claim
these are discrete modules. To show this, it suffices to show that the stabilizer of a point in
L is open in Gal(L/K).

stab(α) = {σ ∈ Gal(L/K) | σα = α} = Gal(L/K(α))

By the Galois correspondence 1.2 item (3), this is open since K(α)/K is finite.

Recall a result that Stan proved last week.

Proposition 2.1. Let G be a profinite group, and let U be the set of open normal subgroups
of G. Let A be a discrete G-module. Then

H i(G,A) ∼= lim−→
N∈U

H i(G/N,AN)

where the maps of the directed system are inflation maps.

Remark 2.2. In particular, in the case where L/K is a Galois extension and G = Gal(L/K),
by the Galois correspondence, the set of open normal subgroups of G is the set of subgroups
Gal(L/E) where E/K is finite Galois. For the modules (L,+) and (L×,×), the above
isomorphism is

H i(Gal(L/K), L×) ∼= lim−→
E∈E

H i

(
Gal(L/K)

Gal(L/E)
, (L×)Gal(L/E)

)
∼= lim−→

E∈E
H i(Gal(E/K), E×)

H i(Gal(L/K), L) ∼= lim−→
E∈E

H i

(
Gal(L/K)

Gal(L/E)
, LGal(L/E)

)
∼= lim−→

E∈E
H i(Gal(E/K), E)
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2.1 Multiplicative Hilbert 90

We recall a result from graduate algebra.

Lemma 2.2 (Linear independence of characters). Let M be a monoid (or group) and L be
a field. Let χ1, . . . , χn : M → L be distinct monoid homomorphisms (where L is a monoid
with respect to multiplication). Then χ1, . . . , χn are linearly independent. That is, if we have
a linear combination ∑

i

aiχi ai ∈ L

which is the zero morphism, then ai = 0 for each i.

Theorem 2.3 (Generalization of multiplicative Hilbert 90). Let L/K be a Galois extension.
Then

H1(Gal(L/K), L×) = 0

Proof. By Remark 2.2,

H1(Gal(L/K), L×) ∼= lim−→H1(Gal(E/K), E×)

where E ranges over finite Galois subextensions. Thus if we prove the result for finite
extensions, it follows since the direct limit of trivial groups is trivial. So we may assume
L/K is finite (so G is finite).

For clarity, we write · for multiplication in L×. Let f : G→ L× be a cocycle, that is, for
τ, σ ∈ G, 1

f(τσ) = τ
(
f(σ)

)
· f(τ)

The elements σ ∈ G are distinct characters L× → L, so they are linearly independent by
Lemma 2.2. Thus ∑

σ∈G

f(σ)σ

is a nonzero map (since f(σ) 6= 0). Let α ∈ L× so that

β =
∑
σ∈G

f(σ) · σ(α) 6= 0

1This may be confusing, since usually the cocycle condition would be written f(τσ) = τf(σ) + f(τ) but
thisis when the G-module is written additively, and here we are writing our G-module L× multiplicatively.
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Then for τ ∈ G,

τ−1(β) = τ−1
∑
σ∈G

f(σ) · σ(α)

=
∑
σ∈G

τ−1
(
f(σ) · σ(α)

)
linearity

=
∑
σ∈G

(
τ−1f(σ)

)
·
(
τ−1σ(α)

)
τ is a field hom

=
∑
g∈G

(
τ−1f(τg)

)
· g(α) substitute g = τ−1σ

=
∑
σ∈G

(
τ−1f(σ)

)
· σ(α) substitute g = σ

=
∑
σ∈G

τ−1
(
f(τ) · τ

(
f(σ)

))
· σ(α) f is a cocycle

=
∑
σ∈G

τ−1(f(τ)) · f(σ) · σ(α) τ is a field hom

= τ−1
(
f(τ)

)
·
∑
σ∈G

f(σ) · σ(α) linearity

= τ−1
(
f(τ)

)
· β

Applying τ to both sides,

β = f(τ) · τ(β) f(τ) =
β

τ(β)
=
τ(β−1)

β−1

Thus f is a coboundary. 2

Theorem 2.4 (Classical multiplicative Hilbert 90). Let L/K be a finite cyclic Galois exten-
sion, let NL

K : L× → K× be the norm map, and let σ ∈ Gal(L/K) be a generator. Then

kerNL
K =

{
σβ

β

∣∣∣∣ β ∈ L×}
Proof. Let G = Gal(L/K) and n = [L : K] = |G|. Since σ generates G, the element
σ − 1 ∈ Z[G] generates IG, hence right hand side is exactly IGL

×. Thus the claim is
equivalent to either of the following.

kerNL
K = IGL

× kerNL
K/IGL

× = 0

Note that the field norm map NL
K coincides with the group norm map NG, as shown below.

NG(β) =

(
n−1∑
i=0

σi

)
β =

n−1∏
i=0

(σiβ) = NL
K(β)

2Again, this looks a bit strange since things are written multiplicatively instead of additively, but it is
right. The usual coboundary condition for f to be a degree one coboundary is that there exists x in the
module such that f(τ) = τ(x)− x, but in multiplicative notation it becomes f(τ) = τx

x .
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(Since we write L× multiplicatively, the sum becomes a product). By definition of Tate
cohomology,

Ĥ−1(G,L×) = kerNG/IGL
× = kerNL

K/IGL
×

Thus the claim reduces to showing Ĥ−1(G,L×) = 0. Since G is cyclic,

Ĥ−1(G,L×) ∼= Ĥ1(G,L×) = H1(G,L×) = 0

with the final equality from Theorem 2.3.

2.2 Additive Hilbert 90

Theorem 2.5 (Normal basis theorem). Let L/K be a finite Galois extension. Then there
exists α ∈ L such that

{σ(α) : σ ∈ Gal(L/K)}
is a K-basis of L.

Proof. (Not a proof.) Usually the proof is broken into cases where K is finite/infinite. The
finite case is not hard, since in that case G is cyclic.

Remark 2.3. Let L/K be a finite Galois extension and G = Gal(L/K). Then L is a
K[G]-module via

K[G]× L→ L

(∑
σ∈G

λσσ

)
· x =

∑
σ∈G

λσσ(x)

where λσ ∈ K. Another way to interpret the normal basis theorem is that L ∼= K[G] as a
K[G]-module. Let α be the element of the normal basis theorem. Then

L→ K[G]
∑
σ∈G

λσσ(α) 7→
∑
σ∈G

λσσ

is an isomorphism of K[G]-modules.

Theorem 2.6 (Generalized additive Hilbert 90). Let L/K be a Galois extension. Then

H i(Gal(L/K), L) = 0

for all i ≥ 1.

Proof. As in the previous proof, Remark 2.2, which says

H i(Gal(L/K), L) ∼= lim−→H i(Gal(E/K), E)

allows us to reduce to the case of a finite Galois extension. So assume L/K is finite, and let
G = Gal(L/K). By the normal basis theorem, L ∼= K[G] as a K[G]-module, and this is also
an isomorphism of G-modules. Thus

L ∼= K[G] ∼= Z[G]⊗Z K ∼= IndG(K) ( ∼= of G-modules)

Thus H i(G,L) = 0 for i ≥ 1 since cohomology always vanishes for induced/coinduced
modules.
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3 Brauer groups

Definition 3.1. Let K be a field, and fix a separable closure Ksep. The Brauer group of
K is

Br(K) = H2(GK , (K
sep)×) = H2

(
Gal(Ksep/K), (Ksep)×

)
Remark 3.1. You may be familiar with another description of Br(K) in terms of central
simple algebras. These are isomorphic, but that takes a bit of work to show. Here is a
whirlwind tour of that alternate description of Br(K).

• A central K-algebra is one whose center is exactly K.

• A simple K-algebra is one with no nontrivial two sided ideals.

• Elements of Br(K) are given by isomorphism classes of central simple K-algebras.

• The group operation in Br(K) is given by tensor product over K.

[A] · [B] = [A⊗K B]

• The identity is represented by the algebra K (actually by Mn(K) for any n).

• The inverse of [A] is represented by the opposite algebra Aop.

This mostly concludes our discussion Br(K) in terms of central simple algebras.

Recall the inflation-restriction sequence result for regular (non-profinite cohomology).

Proposition 3.1. Let G be a group and N ⊂ G a normal subgroup and A a G-module. Let
i ≥ 1, and suppose that Hj(N,A) = 0 for all 1 ≤ j ≤ i− 1. Then the following sequence is
exact.

0 H i(G/N,AN) H i(G,A) H i(N,A)Inf Res

Remark 3.2. If G is a profinite group, and N ⊂ G is a closed normal subgroup, and A is a
discrete G-module, then the preceeding result holds for profinite cohomology. This follows
from the regular cohomology result using the isomorphism

H i(G,A) ∼= lim−→H i(G/H,AH)

along with exactness of the direct limit functor. I suppose this depends on how we define
inflation and restriction for profinite cohomology. If we want this to be really obvious, then
we can define them to be the direct limit of inflation and restriction maps on cohomology of
finite groups.

Proposition 3.2. Let G be a profinite group and N ⊂ G a closed normal subgroup and
A a discrete G-module. Let i ≥ 1, and suppose that Hj(N,A) = 0 for all 1 ≤ j ≤ i − 1.
Then the following sequence is exact.

0 H i(G/N,AN) H i(G,A) H i(N,A)Inf Res
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Proposition 3.3. Let L/K be a Galois extension. There is an exact sequence of abelian
groups

0 H2(Gal(L/K), L×) Br(K) Br(L)Inf Res

Proof. Fix a separable closure Lsep of L.

Lsep = Ksep

L

K

By the multiplicative version of Hilbert 90, H1(Gal(Ksep/K), (Ksep)×) = 0, so we have the
Inf /Res exact sequence in the case i = 2, A = (Ksep)× = (Lsep)×, G = GK = Gal(Ksep/K), N =
GL = Gal(Lsep/L).

0 H2(GK/GL, ((K
sep)×)GL) H2(GK , (K

sep)×) H2(GL, (K
sep)×)

H2(Gal(L/K), L×) Br(K) H2(GL, (L
sep)×)

Br(L)

Inf Res

= = =

=

The simplification of the first term utilizes the following isomorphisms of the Galois corre-
spondence. (

(Ksep)×
)GL

=
(

(Ksep)×
)Gal(Ksep/L)

= L×

GK

GL

=
Gal(Ksep/K)

Gal(Lsep/L)
=

Gal(Ksep/K)

Gal(Ksep/L)
∼= Gal(L/K)

Remark 3.3. In the language of central simple algebras, the map Res : Br(K)→ Br(L) has
a simple description, which is just

Br(K)→ Br(L) A 7→ A⊗K L

The kernel of this, which we now know coincides with H2(Gal(L/K), L×), is called the
relative Brauer group Br(L/K), so we can rewrite the above exact sequence as

0→ Br(L/K)→ Br(K)→ Br(L)

3.1 Brauer group of a finite field

Example 3.1. We show that the Brauer group of a finite field is trivial. Let q be a prime
power, and let Fq be the field with q elements. By our result about direct limits, we just
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need to show that H2 is trivial for the finite Galois subextensions. As we noted earlier, the
finite Galois extensions of Fq are Fqn for n ≥ 1, with cyclic Galois groups. Let

Gn = Gal(Fqn/Fq) ∼= Z/nZ

Then we have

Br(Fq) = Gal(Fsep
q /Fq),F×qn) = lim−→H2(Gal(Fqn/Fq),F×qn) = lim−→H2(Gn,F×qn)

Let N = NGn be the norm element, and recall that multiplication by the norm element of
Gn is the same as the field norm map

NG = N
Fqn

Fq
: F×qn → F×q

We know that the Tate cohomology is 2-periodic for finite cyclic groups. Using this and the
fact that the fixed field of Gn is exactly Fq, we get

H2(Gn,F×qn) ∼= Ĥ0(Gn,F×qn) ∼=
(
F×qn
)Gn

/NGF×qn = F×q / imN
Fqn

Fq

Thus, we have reduced the problem to showing that the norm map is surjective for finite
fields. If we show this, then we have shown Br(Fq) = 0.

Lemma 3.4. The norm map for finite fields is surjective.

N
Fqn

Fq
: F×qn � F×q

Proof. Recall that F×q consists of qth roots of unity. Similarly, Fqn consists of (qn − 1)th
roots of unity. Recall that the Galois group Gal(Fqn/Fq) is generated by the Frobenius
automorphism

φ : Fqn → Fqn x 7→ xq

Let α ∈ F×qn be a primitive (qn − 1)th root of unity, that is, a generator of F×qn . The norm is
the product of the Galois conjugates, so

N
Fqn

Fq
(α) =

∏
σ∈G

σ(α) =
n−1∏
i=0

φi(α) =
n−1∏
i=0

αq
i

= α1+q+q2+···+qn−1

= α
qn−1
q−1

The last equality comes from the formula for the sum of a finite geometric series. Then
observe that (

α
qn−1
q−1

)q−1
= αq

n−1 = 1

by definition of α. That is, the image of α under the norm map is a primitive (q− 1)th root
of unity, so it is a generator of F×q . Thus the nrom map is surjective.
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